Home   >   Technologies   >   Micro/Nanoelectronics And Photonics

KEY ENABLE TECHNOLOGIES

Micro/Nanoelectronics And Photonics

Smart sensors to monitor an object, animal or person’s properties and activities or to monitor production processes and the natural environment. This includes optical/photonic, electrical, chemical, etc. sensors with certain computational capacities and connectivity (limited by energy or size available) in order to periodically and efficiently carry out the collecting and sending of data. This group excludes biosensors and smart materials since they are already included in other categories.

.

Smart Sensors

Smart sensors to monitor an object, animal or person’s properties and activities or to monitor production processes and the natural environment. This includes optical/photonic, electrical, chemical, etc. sensors with certain computational capacities and connectivity (limited by energy or size available) in order to periodically and efficiently carry out the collecting and sending of data. This group excludes biosensors and smart materials since they are already included in other categories.

Smart Actuators

Smart control devices comprised of passive and active materials to manipulate complex parts or assemblies. They are key to the development of reconfigurable/flexible systems able to adapt to dynamic situations. They include piezoelectric actuators, electroactive polymer actuators and smart material-based actuators.

Nanoelectronics

Componentes electrónicos altamente miniaturizados, abarcando desde los nano-transistores a los micro-sistemas que integran múltiples funciones en un único chip. Se incluyen:

  • MEMS & NEMS. Dispositivos electro-mecánicos a escala micro y nano, integrando para ello actuadores, motores, o sensores.
  • Nanodevices. Se incluyen por ejemplo los nanodispositivos de liberación controlada o los nanodispositivos para computación a pequeña escala (e.g. spintrónica)

AI chips and Neuromorphic computing

Technologies that implement cerebral architecture models to carry out machine learning tasks more efficiently and with lower energy demands. They can be divided into two groups of technologies, differentiated according to whether the model implemented is artificial (artificial neural networks) or biological (biological neural networks):

  • AI hardware accelerators/neural network chips. Specialized chips to optimize/accelerate the completion of artificial intelligence tasks (measured in teraflops) like deep learning, computer vision or other learning algorithms for robotics, IoT or sensorics.
  • Neuromorphic chips. Analog chips that imitate cerebral architecture, particularly synapses, encoding information spatially and temporally (pulses), resulting in consumption and sizes that are much smaller than those seen today.

Photonics Integrated Circuits & Biophotonics

Dispositivos basados en técnicas y componentes ópticos, incluyendo las tecnologías y sistemas necesarios para su fabricación a escala industrial. Se distinguen los siguientes subgrupos de tecnologías:

  • Biophotonics. Instrumentos y dispositivos basados en tecnologías (nano)fotónicas para la medición, análisis y visualización de materiales biológicos (moléculas biológicas, células, tejidos, organismos y biomateriales) preservando su integridad.
  • Photonics Imaging. Sistemas ópticos para detectar y visualizar cambios en las propiedades de los materiales (p.ej. espectrómetros de menor tamaño), así como para medir cuantidades físicas (sensores fotónicos).
  • Photonics Integrated Circuits (PICs), Integrated Photonics, Photonics System-on-Chip. Dispositivos para el procesamiento de señales fotónicas, integrando para ello múltiples funciones fotónicas en un solo (micro)chip, y siendo producidos de forma similar a los chips electrónicos para aprovechar la tecnología existente.
  • Optical/Photonics Computing. Sistemas y dispositivos basados en tecnologías ópticas puras o híbridas (optoelectrónica) para abordar tareas computacionales especializadas (como deep learning), con mayor rapidez, eficiencia energética y mayor almacenamiento de información frente a los microprocesadores actuales.

Quantum technologies

Technologies and devices based on the manipulation and exploitation of the effects of quantum mechanics in new disruptive fields. The following technology subgroups have been identified:

  • Quantum sensors. Sensors that use quantum effects to precisely measure physical parameters such as acceleration, electromagnetic fields or gravity.
  • Quantum metrology. Systems that use quantum effects to calibrate and measure international units of measurement (like time and frequency) in a local, verifiable, reliable and robust way.
  • Quantum imaging. Imaging systems that use quantum effects to increase performance and sensitivity beyond the limits of traditional imaging techniques (e.g. quantum-secured imaging, in-vivo cellular and neural imaging, photon imaging, etc.).
  • Quantum communication. Systems based on quantum principles to securely transmit data, including technologies and protocols to distribute quantum keys in global networks through entanglement or quantum repeaters.
  • Quantum computing & simulators. Technologies for the design and construction of scalable and universal quantum computers. These include quantum simulators (for the simulation of complex chemical reactions or superconductivity) as well as hybrid computing technologies which combine both classic and quantum computing.

Displays (LCD, Plasma) & Lighting (LED, OLED) technologies 

  • Tecnologías optoelectrónicas de nueva generación para visualización, iluminación, o generación de energía solar, como OLEDs, HyLEDs, LECS o OPVs. Se persigue en particular la integración de estas tecnologías con IoT, ofreciendo funcionalidades inteligentes adicionales, como posicionamiento indoor o comunicación de datos de banda ancha.

Laser-based technologies

Laser-based technologies for multiple applications, including the rapid processing of materials with minimal heat impact and laser manufacturing power management.